Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
RSC Adv ; 9(39): 22417-22427, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35519490

RESUMO

A series of heteroleptic three-coordinate Cu(i) complexes bearing monodentate N-heterocyclic carbene (NHC) ligands of the type 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) and 1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene (SIPr), and bidentate N-donor ligands of the type unsymmetrically-substituted dimethyl dipyridylamine (Me2Hdpa) and bis(mesityl)biazanaphthenequinone (mesBIAN) have been synthesized. The complexes [Cu(IPr)(3,4'-Me2Hdpa)]PF6, 1; [Cu(IPr)(3,5'-Me2Hdpa)]PF6, 2; [Cu(IPr)(3,6'-Me2Hdpa)]PF6, 3; [Cu(IPr)(mesBIAN)]PF6, 6; [Cu(SIPr)(3,4'-Me2Hdpa)]PF6, 7; [Cu(SIPr)(3,5'-Me2Hdpa)]PF6, 8; and [Cu(SIPr)(3,3'-Me2Hdpa)]PF6, 11 have been characterized by 1H and 13C NMR spectroscopies, elemental analysis, cyclic voltammetry, and photophysical studies in solid and solution phase. Single crystal X-ray structures were obtained for all complexes except 11. The crystallographic data reveal a mononuclear structure for all complexes with the copper atom ligated by one C and two N atoms. The UV-Vis absorption spectra of all dipyridylamine complexes in CH2Cl2 show a strong ligand-centered absorption band around 250 nm and a strong metal-to-ligand charge transfer (MLCT) band around 300 nm. When irradiated with UV light, the complexes exhibit strong emission maxima at 453-482 nm with photoluminescence quantum yields (PLQY) ranging from 0.21 to 0.87 in solid state. While the PLQY values are comparable to those of the symmetrical [Cu(IPr)(Me2Hdpa)]PF6 complexes, a stabilizing CH-π interaction has been reduced in the current systems. In particular, complex 3 lacks any strong CH-π interaction, but emits more efficiently than 1 and 2 wherein the interactions exist. Structural data analysis was performed to clarify the role of ligands' plane angle and the NH/CH⋯F interactions to the observed light interaction of unsymmetrical [Cu(NHC)(Me2Hdpa)]PF6 complexes. DFT calculations were performed to assist in the assignment of the electronic structure and excited state behavior of the complexes.

2.
J Org Chem ; 79(5): 2094-104, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24533440

RESUMO

The Suzuki-Miyaura cross-coupling reaction is a foundation stone of modern organic synthesis, as evidenced by its widespread use in the preparation of pharmaceuticals, agrochemicals, polymers, and other functional materials. With the prevalence of this venerable reaction in industrial synthesis, it is prudent to ensure its application adheres to the tenets of green chemistry. The introduction of cross-coupling catalysts that are active in sustainable solvents is therefore an important endeavor. In this report, a melamine-palladium complex is introduced as a versatile catalyst for the Suzuki-Miyaura cross-coupling reaction. This catalyst is soluble and active in both water and the renewable organic solvent ethyl lactate. The melamine-palladium catalyst can also be cross-linked by reaction with formaldehyde to generate an insoluble polymeric catalyst that can be recovered after the cross-coupling. The melamine-palladium system is inexpensive, easy to handle, bench-stable, and effective in catalysis in the presence of a variety of impurities (high cross-coupling yields were obtained in reactions run in unfiltered river water to illustrate this final point). Additionally, investigations reported herein revealed an intriguing relationship between catalytic efficiency and the base employed in the cross-coupling reaction. Implications for the mechanism of transmetalation in aqueous Suzuki-Miyaura cross-coupling reaction are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...